首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   5篇
  国内免费   11篇
安全科学   6篇
废物处理   1篇
环保管理   3篇
综合类   23篇
基础理论   8篇
污染及防治   55篇
评价与监测   4篇
社会与环境   1篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   3篇
  2013年   18篇
  2012年   13篇
  2011年   5篇
  2010年   2篇
  2009年   6篇
  2008年   4篇
  2007年   4篇
  2006年   6篇
  2005年   4篇
  2004年   7篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1995年   2篇
  1994年   1篇
  1990年   3篇
  1989年   1篇
排序方式: 共有101条查询结果,搜索用时 46 毫秒
71.
Hwang I  Batchelor B 《Chemosphere》2002,48(10):977-1027
Degradative solidification/stabilization (DS/S) is a novel remediation technology that combines chemical degradation with conventional solidification/stabilization. The applicability of the Fe(II)-based DS/S to treating chlorinated alkanes was tested by characterizing degradation reactions of carbon tetrachloride (CT) and its daughter products in cement slurries containing Fe(II). Degradation kinetics of CT and chloroform (CF) were generally very rapid with reaction rates comparable to rates that can be obtained with zero-valent iron. Dechlorination reactions of CT proceeded primarily via a hydrogenolysis pathway, which yielded CF and methylene chloride (MC) as major products and chloromethane and methane as minor products. However, reaction pathways other than hydrogenolysis also appeared to be important at very high pH conditions. MC apparently was resistant to dechlorination reactions over a period of about two months. Kinetics of CT and CF transformation were strongly dependent on pH with an optimal value around 13, which was higher than found previously for PCE. When the initial CF concentration varied between 0.01 and 1 mM, and the Fe(II) dose was 104 mM, pseudo-first-order kinetics generally described the degradation reactions of CF. However, there was also some indication of substrate saturation kinetics in these experiments. This suggests that a saturation model would better describe the kinetics in systems with higher concentration of substrates or lower concentration of the reactive surfaces.  相似文献   
72.
Over the past few years, a large number of studies have been conducted on the use of ultrasound for decomposition of harmful organic pollutants, particularly chlorinated aromatic hydrocarbons (CAH) in wastewater. The published reports cover a variety of applications, including both ultrasonic treatment alone and in combination with other methods, e.g., advanced chemical oxidation processes. This article presents a review of recent work on ultrasonic-based methods of CAH decomposition, with emphasis on the applications of ultrasound alone and in combination with Fenton's reagent, as attractive advanced oxidation systems. In the first part of this review, the basic principles of sonochemical treatment are presented, followed by a review of the applications of ultrasound alone for CAH degradation. In the second part, the mechanisms of CAH degradation with Fenton's reagent and its application for CAH degradation are summarized. In the final part, studies on the applications of ultrasound together with Fenton's reagent are reviewed. The reported results suggest that a combination of ultrasound and Fenton's reagent is more attractive for practical application than the use of either method separately. Further studies, however, are required in this area because the reaction mechanism and the relationship between the reaction rates and process parameters for such a combined process are not yet well established.  相似文献   
73.
受氯代烃类污染的地下水环境修复研究进展   总被引:1,自引:1,他引:1  
越来越多的地下水源正遭受氯代烃类有机物的污染,氯代烃类的地下环境行为及其污染环境的修复技术是当前环境学界的一个热点。目前修复这类污染环境的技术主要有抽出处理、渗透性反应墙和生物修复等。其中研究最多、应用最广的是利用表面活性剂强化抽出处理技术、零价铁降解氯代烃类的渗透性反应墙技术以及原位强化生物修复技术。零价铁反应墙如何长期稳定运行是目前的研究难题,也是该技术的发展目标。强化生物修复是具有巨大发展潜力的一项新兴技术,构建一个能同时降解多组分污染物的微生物生态群落并成功引入污染场地发挥最大功效,是地下水环境生物修复技术研究中的难点,也将是热点。  相似文献   
74.
Tetrakis-(4-sulfonatophenyl)porphyrin cobalt was identified as a highly-active reductive dechlorination catalyst for chlorinated ethylenes. Through batch reactor kinetic studies, degradation of chlorinated ethylenes proceeded in a step-wise fashion with the sequential replacement of Cl by H. For perchloroethylene (PCE) and trichloroethylene (TCE), the dechlorination products were quantified and the C2 mass was accounted for. Degradation of the chlorinated ethylenes was found to be first-order in substrate. Dechlorination trials with increasing catalyst concentration showed a linearly increasing pseudo first-order rate constant which yielded rate laws for PCE and TCE degradation that are first-order in catalyst. The dechlorination activity of this catalyst was compared to that of another water-soluble cobalt porphyrin under the same reaction conditions and found to be comparable for PCE and TCE.  相似文献   
75.
We studied the hydrolysis of gas-phase carbon tetrachloride (CCl4), chloroform (CHCl3), and dichloromethane (CH2Cl2) over a metallic Fe surface for its application in combination with air stripping and soil vapour extraction. The effects of chlorocarbon concentration, type and preparation of the iron-containing material, humidity, and temperature on process performance are reported. The hydrolysis of chlorinated methane derivatives is catalysed by metallic iron resulting in a noticeable decrease of the reaction temperature. The reaction kinetics were found to be consistent with the Langmuir-Hinshelwood model.  相似文献   
76.
The assessment of biodegradation in contaminated aquifers has become an issue of increasing importance in the recent years. To some extent, this can be related to the acceptance of intrinsic bioremediation or monitored natural attenuation as a means to manage contaminated sites. Among the few existing methods to detect biodegradation in the subsurface, stable isotope fractionation analysis (SIFA) is one of the most promising approaches which is pronounced by the drastically increasing number of applications. This review covers the recent laboratory and field studies assessing biodegradation of contaminants via stable isotope analysis. Stable isotope enrichment factors have been found that vary from no fractionation for dioxygenase reactions converting aromatic hydrocarbons over moderate fractionation by monooxygenase reactions (epsilon=-3 per thousand) and some anaerobic studies on microbial degradation of aromatic hydrocarbons (epsilon=-1.7 per thousand) to larger fractionations by anaerobic dehalogenation reactions of chlorinated solvents (epsilon=between -5 per thousand and -30 per thousand). The different isotope enrichment factors can be related to the respective biochemical reactions. Based on that knowledge, we discuss under what circumstances SIFA can be used for a qualitative or even a quantitative assessment of biodegradation in the environment. In a steadily increasing number of cases, it was possible to explain biodegradation processes in the field based on isotope enrichment factors obtained from laboratory experiments with pure cultures and measured isotope values from the field. The review will focus on the aerobic and anaerobic degradation of aromatic hydrocarbons and chlorinated solvents as the major contaminants of groundwater. Advances in the instrumental development for stable isotope analysis are only mentioned if it is important for the understanding of the application.  相似文献   
77.
The effects of Electrical Resistance Heating (ERH) on dechlorination of TCE and redox conditions were investigated in this study. Aquifer and groundwater samples were collected prior to and after ERH treatment, where sediments were heated to approximately 100 degrees C. Sediment samples were collected from three locations and examined in microcosms for 250 to 400 days of incubation. Redox activities, in terms of consumed electron acceptors, were low in unamended microcosms with field-heated sediments, although they increased upon lactate-amendment. TCE was not dechlorinated or stalled at cDCE with field-heated sediments, which was similar or lower compared to the degree of dechlorination in unheated microcosms. However, in microcosms which were bioaugmented with a mixed anaerobic dechlorinating culture (KB-1) and lactate, dechlorination past cDCE to ethene was observed in field-heated sediments. Dechlorination and redox activities in microcosms with field-heated sediments were furthermore compared with controlled laboratory-heated microcosms, which were heated to 100 degrees C for 10 days and then slowly cooled to 10 degrees C. In laboratory-heated microcosms, TCE was not dechlorinated and redox activities remained low in unamended and lactate-amended sediments, although organic carbon was released to the aqueous phase. In contrast, in field-heated sediments, high aqueous concentrations of organic carbon were not observed in unamended microcosms, and TCE was dechlorinated to cDCE upon lactate amendment. This suggests that dechlorinating microorganisms survived the ERH or that groundwater flow through field-heated sediments carried microorganisms into the treated area and transported dissolved organic carbon downstream.  相似文献   
78.
A laboratory intercomparison study was carried out to determine the current capability of Canadian laboratories for the analysis of dioxins and furans in ambient air. Seven laboratories (government and private) participated in the analysis of exposed foam/filter samples, ambient air extracts and standard mixtures. The results indicated that a number of laboratories were capable of the aforementioned analyses; however, further analytical methodology development is also required.  相似文献   
79.
Stable carbon isotope analysis of chlorinated aliphatic compounds was performed at an in situ biostimulation pilot test area (PTA) at a site where 1,2-dichloroethane (1,2-DCA) and trichloroethene (TCE) were present in groundwater. Chlorinated products of TCE reductive dechlorination (cis-dichloroethene (cDCE) and vinyl chloride (VC)) were present at concentrations of 17.5 to 126.4 micromol/L. Ethene, a potential degradation product of both 1,2-DCA dihaloelimination and TCE reductive dechlorination was also present in the PTA. Emulsified soybean oil and lactate were added as electron donors to stimulate anaerobic dechlorination in the PTA. Stable carbon isotope analysis provided evidence that dechlorination was occurring in the PTA during biostimulation, and a means of monitoring changes in dechlorination efficiency over the 183 day monitoring period. Stable carbon isotope analysis was also used to determine if ethene production in the PTA was due to dechlorination of TCE, 1,2-DCA, or both. Fractionation factors (alpha) were determined in the laboratory during anaerobic biotransformation of 1,2-DCA via a dihaloelimination reaction in four separate enrichment cultures. These alpha values (as well as the previously published ranges of alpha for the dechlorination of TCE, cDCE and 1,2-DCA) were used, along with isotopic values measured during the pilot test, to derive quantitative estimates of biotransformation during the pilot test. Dechlorination was found to account for 10.7 to 35.9%, 21.9 to 74.9%, and 54.4 to 67.8% of 1,2-DCA, TCE and cDCE concentration loss respectively in the PTA. Stable carbon isotope analysis indicates that dechlorination of 1,2-DCA, TCE and cDCE were all significant processes during the pilot test, while ethene production during the pilot test was dominated by 1,2-DCA dihaloelimination. This study demonstrates how stable carbon isotope analysis can provide more conservative estimates of the extent of biotransformation than do conventional protocols. In addition, in a complex mixed plume such as this, compound specific isotope analysis is shown to be one of the few methods available for clarifying dominant biotransformation pathways where breakdown products are non-exclusive (i.e. ethene).  相似文献   
80.
Mono-chlorinated products of cyclic volatile methylsiloxanes (cVMS), i.e., Monochlormet-hylheptamethylcyclotetrasiloxane [D3D(CH2Cl)], monochlormethylnonamethylcyclopenta-siloxane [D4D(CH2Cl)], and monochlormethylundemethylcyclohexasiloxane [D5D(CH2Cl)], were detected in water [<LOQ (Limit of quantitation) -86.3 ng/L, df (detection frequency) = 23%-38%, n=112] and sediment samples [<LOQ-504 ng/g dw (dry weight), df = 33%-38%, n=112] from 16 lakes located in Shengli oilfield of China, and had apparent increasing trends (31%-34% per annum) in sediments during Year 2014-2020. Simulated experiments showed that chloro-cVMS in sediment-water system had approximately 1.7-2.0 times slower elimination rates than parent cVMS. More specifically, compared with those of parent cVMS, volatilization (86-2558 days) and hydrolysis (135-549 days) half-lives of chloro-cVMS were respectively 1.3-2.0 and 1.8-2.1 times longer. In two species of freshwater mussels (n=1050) collected from six lakes, concentrations of chloro-cVMS ranged from 9.8-998 ng/g dw in Anodonta woodiana and 8.4-970 ng/g dw in Corbicula fluminea. Compared with parent cVMS, chloro-cVMS had 1.1-1.5 times larger biota-sediment accumulation factors (2.1-3.0) and 1.1-1.7 times longer half-lives (13-42 days). Their stronger persistence in sediment and bioaccumulation in freshwater mussels suggested that environmental emission, distribution and risks of chloro-cVMS deserve further attention.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号